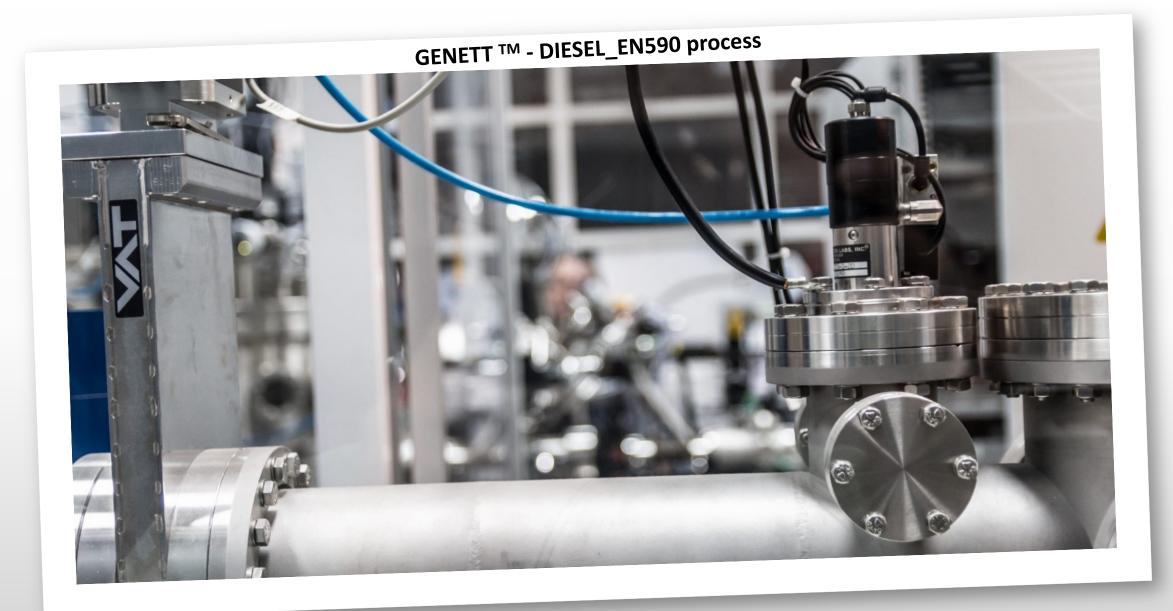
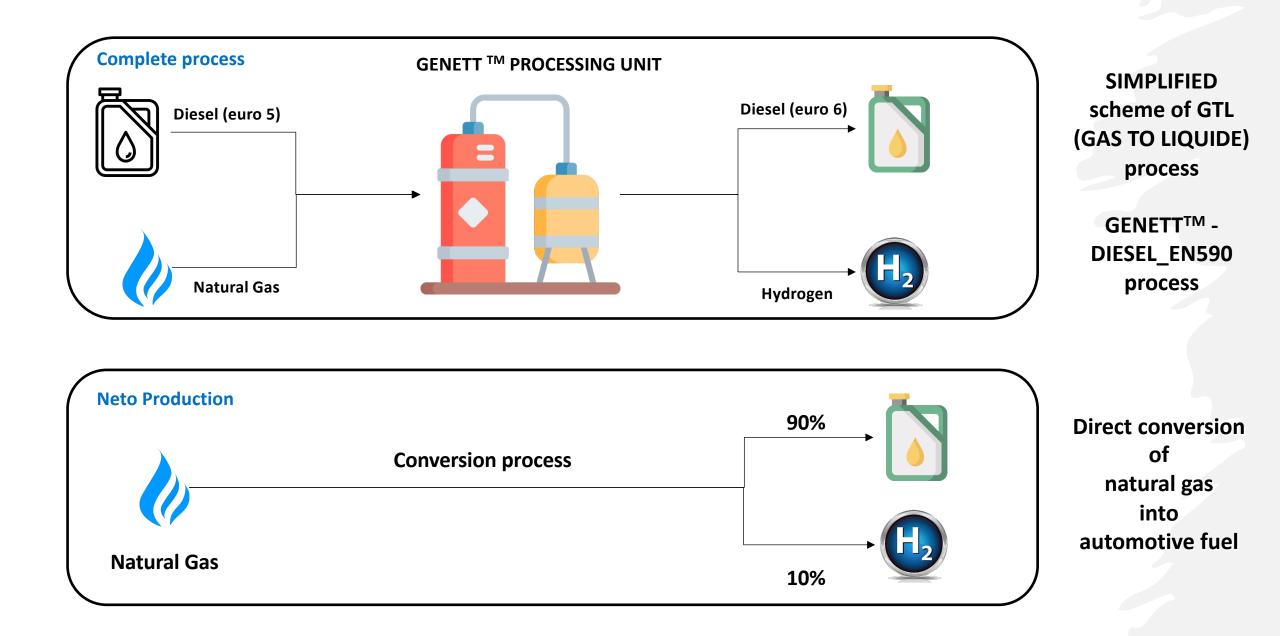
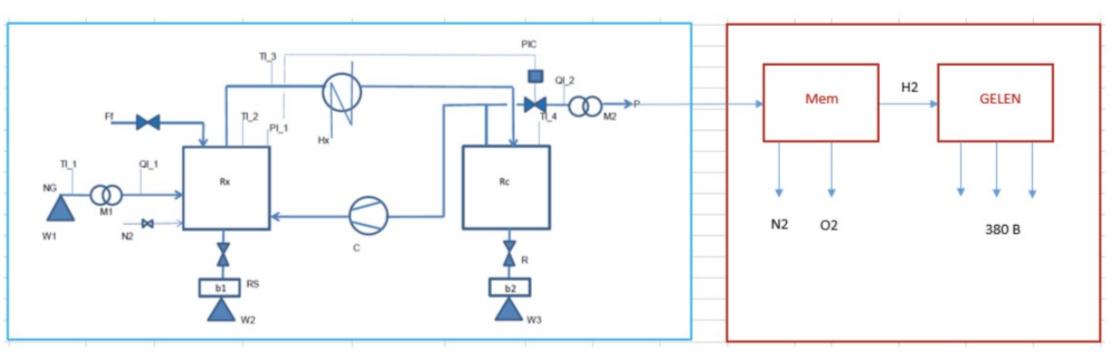
GENETT [™] TECHNOLOGY


GAS TO LIQUIDE DIESEL_EN590 process


GENETT[™] TECHNOLOGY

opens up the following new possibilities :

- direct conversion of natural and petroleum gases into automotive fuel;
- processing of various types of hydrocarbon and nonhydrocarbon raw materials;
- processing organic oxygen-containing raw materials:
 vegetable oils, UCO, alcohols into automotive fuels;
- processing CO2, extracted from various fuel combustion gases, into alternative fuels;
- generation of thermal and electric energy within the framework of an autonomous installation that can be offered to various customers, e.g. from commercial and industrial enterprises to owners of individual houses;
- ability to synthesize hydrocarbons within a technical system, similarly as it does occur in the Earth's interior;

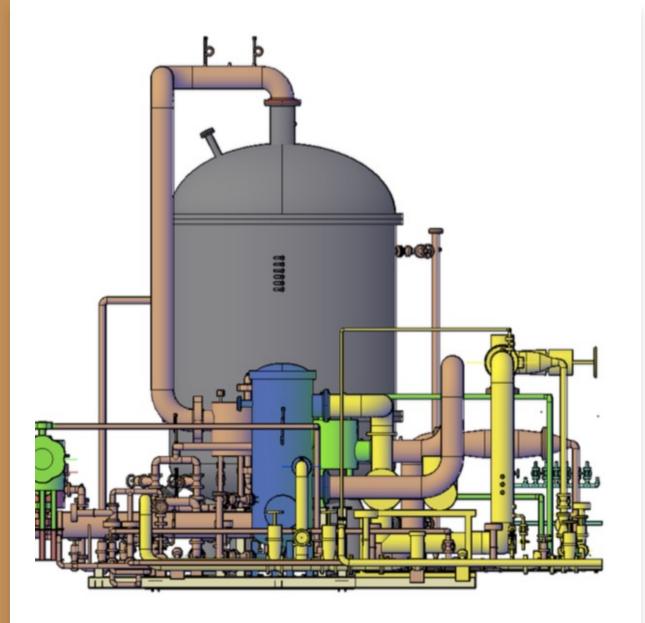


Processing unit - Technical scheme

GENETT[™] - **DIESEL_EN590** process

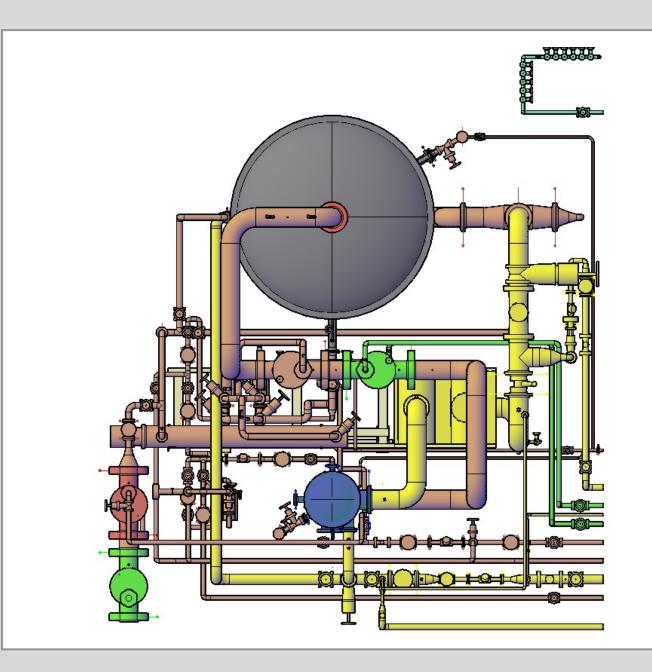
Equipment Legend:

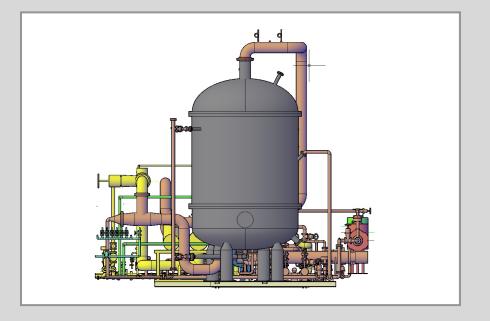
- W1 gas source;
- R_x gas conversion reactor;
- H_x tubular heat exchanger for cooling the gas-liquid mixture from reactor R_x;
- R_c gas-liquid separator;
- C blower (gas fan);
- M₁ inlet gas flow meter;
- M₂ outlet gas flow meter;
- Mem process gases separation membrane;
- GELEN electric power generator;

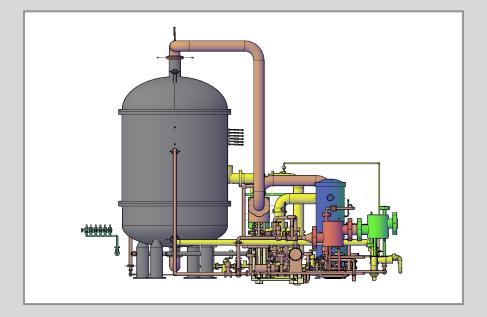

Process description

GENETT[™] DIESEL_EN590 process

• The gas mixture, in which the main gas is methane from the source W1, enters the reactor Rx. The mixture is preheated and then gas fan C is started. In the reactor zone, methane and its homologs are converted to diesel fuel, based on the reactions taking place:


$nCH_4 = C_nH_{2n+2} + (n-1)H_2$


- The gas-liquid mixture from the reactor enters the Hx heat exchanger for cooling, where it is cooled to the separation temperature in the separator Rc.
- The gas separated from the liquid phase is taken in by the blower C and sent to the reactor Rx.
- At a pre-set concentration of molecular hydrogen, part of it is taken to the Mem membrane, where it is separated into nitrogen, oxygen and hydrogen. Further, hydrogen is processed / utilised at the electric power generator (GELEN), producing electric power. The required amount of electric power that the processor unit consumes is supplied from the GELEN and replaces the commercial electricity (initially supplied from the grid) needed at the start of the process. The excess electric power is transmitted (supplied/sold) through the electric power grid.



INDUSTRIAL PRODUCTION OF DIESEL FUEL FROM GAS-HYDROCARBON RAW MATERIALS

GENETT[™] DIESEL_EN590 process

Production is enabled by a complex of technological equipment

installed at a site, which meets the standards and requirements in force in the country of the Customer, namely:

- a complex of one or more production units for processing the selected raw materials, installed under a canopy;
- operator's room, including: panel room, premises of the cooling machine*, social unit and control room;
- storage tanks for raw materials**;
- storage capacity for finished products**;
- loading and unloading car ramp **;
- gas separation module;
- module for the production of electric power from hydrogen;
- required gas supply (methane, nitrogen, air) at a pressure of (3-10) kG/cm2;
- electric power required 615 kWh per one production unit;
- dimensions of one unit: L 13.34 m; W 9.745 m; H 9.64 m
- The refrigerating machine can be replaced by a module for generating electric power from the thermal energy of the process.

Photo: Industrial installation equipment - Reactor

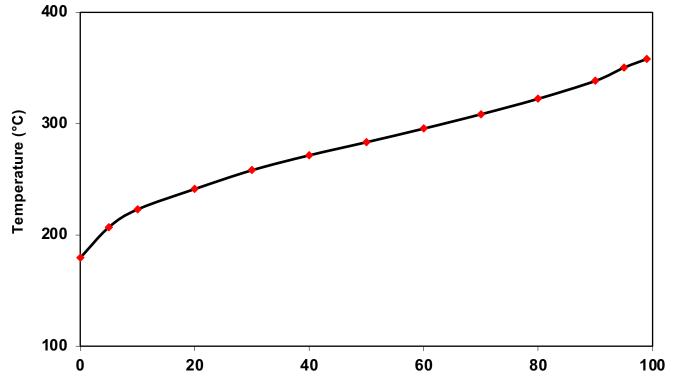
Not included in delivery.

Nr.	Component/Parameter name	Unit	Parameter
1	Diesel fuel consumption	n.m3/h	29 616,00
2	Diesel fuel consumption	Kg/h	5996,00
3	Diesel fuel consumption	t/day	143,90
4	Natural gas consumption	n.m3/h	1 234,00
5	Natural gas consumption	t/h	0,88
6	Natural gas consumption	t/day	21,15
7	Production of final product GENETT EN 590	t/day	162,94
8	Production of final product GENETT EN 590	t/month	4 888,29
9	Hydrogen production	t/h	0,09
10	Hydrogen production	t/day	2,12
11	Energy value GENETT EN 590	MDJ/kg	45,79
12	El. energy consumption	Kwt/h	615,00
13	Electric heating	Kwt/h	332,00
14	Cooling module	Kwt/h	22,00
15	Pump	Kwt/h	11,00
16	Buster	Kwt/h	250,00
17	TOTAL EL. ENERGY CONSUMPTION	Kwt/h	615,00
18	Specific electricity consumption for heating per tonne of product	Kwt/t	48,2739
19	Specific electricity consumption for cooling module per tonne of product	Kwt/t	3,1989
20	Specific electricity consumption for pumps per tonne of product	Kwt/t	1,5994
21	Specific electricity consumption for buster per tonne of product	Kwt/t	36,3508
22	Specific electricity consumption per tonne of product	Kwt/t	89,4230

Industrial Production Pilot Project in Uzbekistan

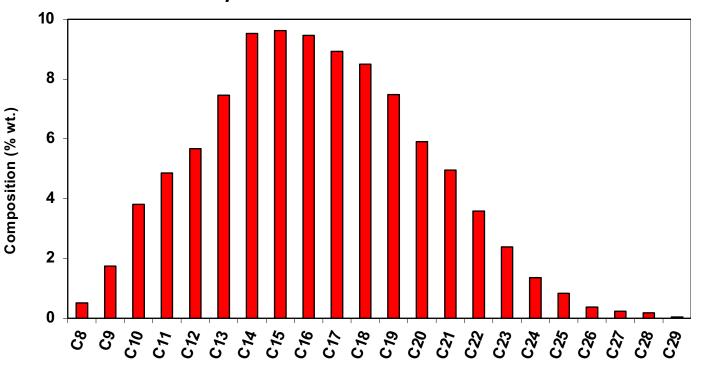
Project realization 4Q 2022

Unit Capacity: 6 t/h


PRODUCT PHOTO

GENETT^{™ -} DIESEL_EN590 process

SAMPLE ANALYSIS



Percentage of distillation (% vol.)

The gas chromatographic analysis shows that the sample is diesel fuel with a normal distribution of hydrocarbons, also containing 2.5 wt.% FAME (biocomponent). The full results of the standard distillation test (ČSN EN ISO 3405) are shown as a distillation curve in figure above.

Diesel fuel sample analysis protocol

Gas chromatographic analysis and determination of selected parameters were carried out for one sample of hydrocarbon fuel, produced from methane, designated as **"GENETT[™]**-**DIESEL_EN590 process"**

Individual hydrocarbon content based on carbon atom count

Hydrocarbon composition

Using gas chromatography, the distribution of individual hydrocarbon groups by the number of carbon atoms was determined. The results of this analysis are graphically shown in figure above.

Diesel fuel sample analysis protocol

Gas chromatographic analysis and determination of selected parameters were carried out for one sample of hydrocarbon fuel, produced from methane, designated as **"GENETT™**-**DIESEL_EN590 process"** At the same time, the cumulative values of the same analysis are shown in tabular format in presented table.

Individual hydrocarbons	Content (% wt.)		
up to C8			
•	0,5		
up to C9	2,3		
up to C10	6,1		
up to C11	10,9		
up to C12	16,6		
up to C13	24,1		
up to C14	33,6		
up to C15	43,2		
up to C16	52,7		
up to C17	61,6		
up to C18	70,1		
up to C19	77,6		
up to C20	83,5		
up to C21	88,5		
up to C22	92,0		
up to C23	94,4		
up to C24	95,8		
up to C25	96,6		
up to C26	97,0		
up to C27	97,2		
up to C28	97,4		
up to C29	97,5		
FAME	2,5		

Diesel fuel sample analysis protocol

Gas chromatographic analysis and determination of selected parameters were carried out for one sample of hydrocarbon fuel, produced from methane, designated as "GENETT[™]-DIESEL_EN590 process"

Total hydrocarbon content based on carbon atom count

Parameter	Sample GENETT CH4_DIESEL_EN590	Standard requirements EN 590
Density at 15 °C (kg·м ⁻³)	836,7	820 - 845
Kinematic viscosity at 40 °С (мм ² ·с ⁻¹)	3,15	2,00 - 4,50
Up to 250 °C boil away (% vol.)	25,0	max. 65
Up to 350 °C boil away (% vol.)	95,0	min. 85
95 % volume boils at (°C)	350	max. 360
Cetane index	55,7	min. 46
Flash point - PM (°C)	69,5	min. 55
Monoaromatics content (% wt.)	13,5	-
Polyaromatics content (% wt.)	1,8	max. 8
Total Aromatics (% wt.)	15,3	-
FAME content (% vol)	2,4	max. 7
Sulfur content (mg·kg ⁻¹)	1	max. 10
Filtration, cold filter - CFPP (°C)	-12	max. 0/-10/-20*

The results showing other

analyzed sample are in

presented table together

with the requirements of

the EN 590 standard for

physico-chemical properties of the

diesel fuels.

Its clear that the sample "GENETT™ -DIESEL_EN590" complies with the EN 590 standard requirements.

The analyzed fuel is applicable only as a motor fuel of class B (for the summer period from April 15 to September 30) and class D (off-season from October 1 to November 15 and from March 1 to April 14), and not as a winter diesel of class F (November 16 -February 29).

Prof. eng. Pavel Shimachek, Higher School of Chemical Technology Fuels Dept. The **GENETT^{™-} DIESEL_EN590** process/ technology allows the production of fuel that simultaneously meets the requirements for different climatic regions, without the use of additives.

On following slides are two different example of fuel production using the **GENETT^{™-} DIESEL_EN590** process/technology.

Sample 18286 Class A, B & C

Raw materials for the process were provided by ČEPRO a.s,

Based on the analysis, it can be concluded that this fuel complies with the EN590 EURO-5 standard, sulfur content 8.5 mg / l.

Fuel can only be used for climatic regions with a temperature of at least minus 10 degrees C, class A, B, C of paragraph 5.5.2 of the EN590 standard, determined by the parameter of the maximum filterability temperature CFPP

Testing laboratory no. 1152.1, accredited by Czech Accreditation Institute in accordance with ČSN EN ISO/IEC 17025:2005

LABORATORY REPORT no. 18286

Client

Client Order		SGS order	5662
Sample no., product	18286	diesel fuel	
Sample specification		of drum No. 2 and drum No. 3 GDiesel production unit	3,
Quantity, sample bottle type			
Sampling date			
Sampling place			
Sampled by	Sampled by SGS emplo	yee	
Accredited sampling - method	SOP 97 (ČSN EN ISO 3	170)	
Submitter	client		
Sample reception date			
Report approval date		nni laborator	
Report issued by	Luboš Chládek	SCC SCC	
Issue date:	Approved by:	Luboš Chládek Classic Methods Specialist	

The results shown in this laboratory report specifically refer to the sample tested as received unless otherwise stated. All tests have been performed using the latest revision of the methods indicated, unless specifically marked otherwise on the report. Precision parameters apply in the determination of the above results. Users of the data shown on this report should refer to the latest published revisions of ASTM D-3244, IP 387, ISO 4259 and Appendix E of IP Standard Methods for Analysis and Testing when utilizing the test data to determine conformance with any specification or process requirement. This Test Report is issued under the Company's General Conditions of Service (copy available upon request or on the company website at http://www.sgsgroup.cz/cs-CZ/Terms-and-Conditions.apx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. This report shall not be reproduced except in full, without the written approval of the laboratory. Tests out of the accreditation range are identified by a code explained bellow the table of results.

SGS Czech Republic, s.r.o.	Divize paliv a maziv, U Trati 42, 100 00 Praha 10 – Strašnice, Česká republika fakturační adresa: K Hájům 1233/2, 155 00 Praha 5, Česká republika IČ: 48589241, zapsána v OR MS Praha, odd. C, vl. 18205, dne 8.3.1993 t +420 274 021 310 f +420 274 817 287 e sgs_czech@sgs.com www.cz.sgs.com
----------------------------	--

_	Laboratory report no. 10200							
Code	Test descriptions,	parameters	Unit	Result	Date	Testing method		
11	Sulfur		mg/kg	8,5	27.03.2018	SOP 101 (ČSN EN ISO 20846)		
11	Flash point in closed cup (Pensky-Martens)		°C	63,0	26.03.2018	SOP 29 (ČSN EN ISO 2719)		
11	Water by coulometric Karl Fischer titration method		mg/kg	<30	26.03.2018	SOP 51 (ČSN EN ISO 12937)		
12	Kinematic viscosity at 40°C		mm^2/s	2,541	27.03.2018	SOP 40 (ČSN EN ISO 3104)		
11	Cloud point		°C	-7	26.03.2018	SOP 38 (ČSN EN 23015)		
12	Ash		% m/m	<0.001	27.03.2018	SOP 46 (ČSN EN ISO 6245)		
11	Polyaromatic hydrocarbons		% m/m	2,7	27.03.2018	SOP 105 (ČSN EN 12916)		
11	Copper strip corrosion (3 h at 5	50 °C)	rating	class 1	27.03.2018	SOP 49 (ČSN EN ISO 2160)		
11	Total contamination of low visc	osity fuels by filtration	mg/kg	<6,0	27.03.2018	SOP 33 (ČSN EN 12662)		
12	Lubricity HFRR		μm	430	27.03.2018	SOP 148 (ČSN EN ISO 12156-1)		
12	Cetane number on engine			50,7	27.03.2018	SOP 104 (ČSN EN ISO 5165)		
12	Conradson carbonization resid	ue of 10% residue	% m/m	0,06	28.03.2018	SOP 43 (ČSN ISO 6615, ČSN EN ISO 3405)		
11	Distillation - Diesel				26.03.2018	SOP 26 (ČSN EN ISO 3405)		
<u> </u>	Initial boiling point		°C	176,7				
	Recovered volume at 250 °C		% V/V	45.5				
	Recovered volume at 350 °C		% V/V	94.8				
\vdash	Recovered volume at 360 *C		% V/V	*				
\vdash	95% (V/V) recovered		°C	351,6				
\vdash	Total recovery		% V/V	97,3	<u> </u>			
\vdash	Final boiling point		°C	356,4	<u> </u>			
11	Cold Filter Plugging Point (CFF	201	°C	-9.0	26.03.2018	SOP 36 (ČSN EN 116)		
11	Fatty acid methyl ester (FAME		% V/V	<0.30		SOP 91 (ČSN EN 14078)		
11	Density at 15°C by oscillation I	,	kg/m^3	831,8		SOP 27 (ČSN EN ISO 12185)		
11	Cetane index	s-cabe metriod	Ngrinna	51,3		SOP 35 (ČSN EN ISO 12185)		
12				51,5		SOP 111 (ČSN EN ISO 12205)		
12	Oxidation stability of diesel fue total insolubles		a/m/2	2	20.03.2010	30P 111 (CSN EN 130 12205)		
.		g/m^3	<0,1	00.00.0040	SOP 135 (ČSN EN 16576)			
	Manganese	parformed within the accred	mg/l			=accredited test; 2=unaccredited test		
Secon	d digit represents the testing locatio	n:1=Prague laboratory, l	J Trati 42, Pragu	e 10;2=Kolin lab	oratory, Ovča	árecká 314, Kolín 5;3=mobile laboratory, U Trati 4.		
Pragu	e 10;9=outside contractor							
Note	This laborate	ry report replaces labor	atory report no	o. 18286 issued	on 28.3.201	8		
Test	ing method	Commentary						
	101 (ČSN EN ISO 20846)		steaded means		0.6 method	AV of each value		
_	29 (ČSN EN ISO 2719)	UV detection analyzer, e Extended measurement			- 0,5 mg/kg 4	on on result value.		
					ncertainty for	water content up to 1000 mg/kg ±5 % of result		
SOP	51 (ČSN EN ISO 12937)	value.	and and a second					
_	40 (ČSN EN ISO 3104)	Capillary viscometer Ubl	belohde, extende	ed measurement u	ncertainty is 3	£0,2% of result value.		
SOP	38 (ČSN EN 23015)	Extended measurement						
SOP	46 (ČSN EN ISO 6245)	Extended measurement under 1 %m/m.	uncertainty ±3%	of result value for	results over	1 %m/m, ±6% of result value for results		
SOP	105 (ČSN EN 12916)	HPLC, extended measu	rement uncertair	ntv - 0.2 %m/m + 7	% of result v	alue.		
	49 (ČSN EN ISO 2160)	Visual test.						
<u> </u>	33 (ČSN EN 12662)	Extended measurement		0 % of result value	Version 199	8 used for FAME according CEN recommendation,		
	2014 used for other matr			and a first house the	od 141 Date	minution at 80 10 for discal and laboratory		
SOP	SOP 148 (ČSN EN ISO 12156-1) High frequency reciproci temperature for gasoline					mination at 60 °C for diesel and laboratory		
			a CFR F-5, exte	ended measuremen	nt uncertainty	- ±1 unit of cetane number.		
	SOP 43 (ČSN ISO 6615, ČSN EN ISO Extended measurement			% of result value.				
3405) 26 (ČSN EN ISO 3405)	uncostalatu ±4.9	C and +28/MM					
_	26 (ČSN EN 130 3405) 36 (ČSN EN 116)	Extended measurement Extended measurement						
	91 (ČSN EN 14078)	Infrared spectrometry, e	,		±0.3%V/V			
	27 (ČSN EN ISO 12185)	Oscillating U-tube digital				y - ±0.2 kg/m*3.		
	35 (ČSN EN ISO 4264)	Calculation based on de				• • •		
<u> </u>	111 (ČSN EN ISO 12205)	Oxidation apparatus with	n gravimetric eva	luation of generate	ed deposits, 1	6 h at 95 °C, 3 L oxygen/hour. Extended		
	measurement uncertainty ±10% of result value.							

Laboratory report no. 18286

SOP 135 (ČSN EN 16576) ICP-OES method, extended measurement uncertainty is ±15% of result value.
Extended measurement uncertainty is a product of standard measurement uncertainty and an extension coefficient k=2 which corresponds to about 95% probability
coverage for standard distribution. Standard measurement uncertainty was determined in accordance with document EA-4/02.

Sample 10565 Class A,B,C,D & F

Based on the analysis, it can be concluded that this fuel complies with the EN590 EURO-5 standard, the sulfur content is 4 mg / l.

The fuel can be used for climatic regions with a temperature of at least minus 20 degrees C, class A, B, C, D, E, F of paragraph 5.5.2 of the EN590 standard determined by the parameter of the maximum filterability temperature CFPP.

This fuel is an all-season type. In addition the product can be classified as class 0 winter fuel.

Testing laboratory no. 1152.1, accredited by Czech Accreditation Institute in accordance with ČSN EN ISO/IEC 17025:2005

LABORATORY REPORT no. 10565

Client Key Industry Engineering Group, s.r.o. Mojmírova 1710/15, 140 00 Praha 4 - Nusle						
Client Order Sample no., product	10565		SGS order 5458 diesel fuel			
Sample specification	n GENE	TT EN590, 4.1	0.2017			
Quantity, sample bo	ttle type					
Sampling date						
Sampling place						
Sampled by	Sample	ed by client				
Accredited sampling	- method Samplin	g out of accreditat	ion range			
Submitter	client					
Sample reception da	te 09.10.2	017				
Report approval date	e 07.11.2	017	abni laborator			
Report issued by	Luboš (Chládek	133 C. 115			
Issue date: 7.11.2017	,	Approved by:	Luboš Chládek Classic Methods Specialist			

The results shown in this laboratory report specifically refer to the sample tested as received unless otherwise stated. All tests have been performed using the latest revision of the methods indicated, unless specifically marked otherwise on the report. Precision parameters apply in the determination of the above results. Users of the data shown on this report should refer to the latest published revisions of ASTM D-3244, IP 367, ISO 4259 and Appendix E of IP Standard Methods for Analysis and Testing when utilizing the test data to determine conformance with any specification or process requirement. This Test Report is issued under the Company's General Conditions of Service (copy available upon request or on the company website at http://www.sgsgroup.cz/cs-CZ/Terms-and-Conditions.aspx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. This report shall not be reproduced except in full, without the written approval of the laboratory. Tests out of the accreditation range are identified by a code explained bellow the table of results.

SGS Czech Republic, s.r.o.

Divize paliv a maziv, U Trati 42, 100 00 Praha 10 – Strašnice, Česká republikafakturační adresa: K Hájům 1233/2, 155 00 Praha 5, Česká republika IČ: 48589241, zapsána v OR MS Praha, odd. C, vl. 18205, dne 8.3.1993 t +420 274 021 310 f +420 274 817 287 e sgs_czech@sgs.com www.cz.sgs.com

Code	Test descriptions, parameters	Unit	Result	Date	Testing method
11	Sulfur	mg/kg	4,0	10.10.2017	SOP 101 (ČSN EN ISO 20846)
11	Flash point in closed cup (Pensky-Martens)	°C	56,5	10.10.2017	SOP 29 (ČSN EN ISO 2719)
11	Water by coulometric Karl Fischer titration method	mg/kg	70	09.10.2017	SOP 51 (ČSN EN ISO 12937)
12	Kinematic viscosity at 40°C	mm^2/s	2,248	10.10.2017	SOP 40 (ČSN EN ISO 3104)
11	Cloud point	°C	-21	10.10.2017	SOP 38 (ČSN EN 23015)
12	Ash	% m/m	<0,001	10.10.2017	SOP 46 (ČSN EN ISO 6245)
11	Polyaromatic hydrocarbons	% m/m	1,4	10.10.2017	SOP 105 (ČSN EN 12916)
11	Copper strip corrosion (3 h at 50 °C)	rating	class 1	10.10.2017	SOP 49 (ČSN EN ISO 2160)
11	Total contamination of low viscosity fuels by filtration	mg/kg	9,3	10.10.2017	SOP 33 (ČSN EN 12662)
12	Lubricity HFRR	μm	420	10.10.2017	SOP 148 (ČSN EN ISO 12156-1)
12	Cetane number on engine		51,0	12.10.2017	SOP 104 (ČSN EN ISO 5165)
12	Conradson carbonization residue of 10% residue	% m/m	0,01	10.10.2017	SOP 43 (ČSN ISO 6615, ČSN EN ISO 3405)
11	Distillation - Diesel			10.10.2017	SOP 26 (ČSN EN ISO 3405)
	Initial boiling point	°C	170,2		
	Recovered volume at 250 °C	% V/V	41,8		
	Recovered volume at 350 °C	% V/V	*		
	Recovered volume at 360 °C	% V/V	*		
	95% (V/V) recovered	°C	312,9		
	Total recovery	% V/V	97,7		
	Final boiling point	°C	320,6		
11	Cold Filter Plugging Point (CFPP)	°C	-23	10.10.2017	SOP 36 (ČSN EN 116)
11	Fatty acid methyl ester (FAME)	% V/V	<0,30	11.10.2017	SOP 91 (ČSN EN 14078)
11	Density at 15°C by oscillation U-tube method	kg/m^3	828,1	09.10.2017	SOP 27 (ČSN EN ISO 12185)
11	Cetane index		52,4	10.10.2017	SOP 35 (ČSN EN ISO 4264)
12	Oxidation stability of diesel fuel			10.10.2017	SOP 111 (ČSN EN ISO 12205)
	total insolubles	g/m^3	3		
11	Manganese	mg/l	<0,1	10.10.2017	SOP 135 (ČSN EN 16576)

First digit describes whether the test was performed within the accreditation range of the testing laboratory 1152.1: 1...=accredited test; 2...=unaccredited test Second digit represents the testing location:...1=Prague laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, U Trati 42, Prague 10;...2=Kolín laboratory, Ovčárecká 314, Kolín 5;...3=mobile laboratory, U Trati 42, Prague 10;...2=Kolín la

Note

Printed:

no. 10565

Testing method	Commentary				
SOP 101 (ČSN EN ISO 20846)	UV detection analyzer, extended measurement uncertainty - ±7 % of result value.				
SOP 29 (ČSN EN ISO 2719)	Extended measurement uncertainty - ±1 °C.				
SOP 51 (ČSN EN ISO 12937)	Karl Fischer coulometric titration, extended measurement uncertainty for water content up to1000 mg/kg ±5 % of result value.				
SOP 40 (ČSN EN ISO 3104)	Capillary viscometer Ubbelohde, extended measurement uncertainty is ±0,2% of result value.				
SOP 38 (ČSN EN 23015)	Extended measurement uncertainty - ±1 °C.				
SOP 46 (ČSN EN ISO 6245)	Extended measurement uncertainty - ±3% of result value for results above 1 %m/m, ±6% of result value for results under 1 %m/m.				
SOP 105 (ČSN EN 12916)	HPLC, extended measurement uncertainty - ±7 % of result value.				
SOP 49 (ČSN EN ISO 2160)	Visual test.				
SOP 33 (ČSN EN 12662)	Extended measurement uncertainty - ±10 % of result value. Pro FAME použita dle doporučení CEN norma 1998, pro other 2014.				
SOP 148 (ČSN EN ISO 12156-1)	High frequency reciprocating rig device. Determination by method "A" at 60 °C for diesel and laboratory temperature for gasoline. Extended measurement uncertainty - 25 µm.				
SOP 104 (ČSN EN ISO 5165)	Testing engine Waukesha CFR F-5, extended measurement uncertainty - ±1 unit of cetane number.				
SOP 43 (ČSN ISO 6615, ČSN EN ISO 3405)	Extended measurement uncertainty - ±4 % of result value.				
SOP 26 (ČSN EN ISO 3405)	Extended measurement uncertainty ±4 °C and ±2%V/V.				
SOP 36 (ČSN EN 116)	Extended measurement uncertainty - ±1 °C.				
SOP 91 (ČSN EN 14078)	Infrared spectrometry, extended measurement uncertainty ±0,3%V/V.				
SOP 27 (ČSN EN ISO 12185)	Oscillating U-tube digital densimeter, extended measurement uncertainty - ±0.2 kg/m^3.				
SOP 35 (ČSN EN ISO 4264)	Calculation based on density and distillating curve				
SOP 111 (ČSN EN ISO 12205)	Oxidation apparatus with gravimetric evaluation of generated deposits, 16 h at 95 °C, 3 L oxygen/hour. Extended measurement uncertainty ±10% of result value.				
SOP 135 (ČSN EN 16576)	ICP-OES method, extended measurement uncertainty is ±15% of result value.				

Extended measurement uncertainty is a product of standard measurement uncertainty and an extension coefficient k=2 which corresponds to about 95% probability coverage for standard distribution. Standard measurement uncertainty was determined in accordance with document EA-4/02.

SGS Czech Republic, s.r.o.

Divize paliv a maziv U Trati 42, 100 00 Praha 10

Inspection body type A No. 4015 accredited by Czech Accreditation Institute

Inspection report: 3028/2017				Laboratory tests and evalu	uation of the results				
Subject of	finspection:	Diesel fuel			(evidence No. 10565, GDie	esel, 4.10.2017)			
Type and date of sampling: sample supplied by the cl Client:									
				Key Industry Engineering	Group, s.r.o., Praha 4	- Nusle Mo	jmírova 1710/1	5	
Diesel fuel ČSN EN 590 (2014)	Parameter		Unit	rest method		Measured value Sample no. 10565 ATL 1152.1 GDiesel, 4.10.2017	Limit with inclusion of measurement uncertainty according to ČSN EN ISO 4259 min. max.		Result of evaluation
	Flash point in closed cu	up (Pensky-Martens)	°C	SOP 29	(ČSN EN ISO 2719)	56,5	53,0		Meets
		on residue of 10% residue	% m/m	SOP 43 3405)	ČSN ISO 6615, ČŚN EN ISO	0,01		0,36	Meets
	Total contamination of filtration		mg/kg	SOP 33	(ČSN EN 12662)	9,3		28	Meets
class F	Cetane number on engi	ne		SOP 104	(ČSN EN ISO 5165)	51,0	48,4		Meets
class F	Cold Filter Plugging Po	int (CFPP)	°C	SOP 36	(ČSN EN 116)	-23		-17	Meets
class F	Cetane index			SOP 35	(ČSN EN ISO 4264)	52,4	45,0		Meets
	Distillation - Diesel			SOP 26	(ČSN EN ISO 3405)				
	- Recovered volume at 250 °C		% V/V			41,8		<66,0	Meets
	- Recovered volume at	350 °C	% V/V			*	84,0		not evaluated
	- 95% (V/V) recovered		°C			312,9		365,0	Meets
class F	Density at 15°C by oscil		kg/m^3	SOP 27	(ČSN EN ISO 12185)	828,1	819,0	846,0	Meets
class F	Kinematic viscosity at 4	l0°C	mm^2/s	SOP 40	(ČSN EN ISO 3104)	2,248	1,99	4,52	Meets
	Copper strip corrosion	(3 h at 50 °C)	stupeň		(ČSN EN ISO 2160)	TŘÍDA1		TŘÍDA1	Meets
	Manganese		mg/l		5 (ČSN EN 16576)	<0,1		2,21	Meets
	Lubricity HFRR		μm		(ČSN EN ISO 12156-1)	420		520	Meets
	Fatty acid methyl ester		% V/V	SOP 91	(ČSN EN 14078)	<0,30		7,3	Meets
	Oxidation stability of die		g/m^3		(ČSN EN ISO 12205)	3		33	Meets
	Polyaromatic hydrocark	oons	% m/m		6 (ČSN EN 12916)	1,4		8,6	Meets
	Ash		% m/m		(ČSN EN ISO 6245)	<0,001		0,013	Meets
	Sulfur		mg/kg		(ČSN EN ISO 20846)	4,0		12,0	Meets
	Cloud point		°C		(ČSN EN 23015)	-21		-6	not evaluated
	Water by coulometric Ka method	arl Fischer titration	mg/kg	SOP 51	(ČSN EN ISO 12937)	70		260	Meets

Dokument je možno bez souhlasu inspekčního orgánu SGS Czech Republic, s.r.o. kopírovat pouze vcelku a vztahuje se pouze na uvedené zkoušené vzorky paliv. SGS Czech Republic, s.r. o., IČ: 48589241, zapsána v OR MS Praha, odd. C, vl. 18205, dne 8.3.1993

SGS Czech Republic, s.r.o.

Divize paliv a maziv U Trati 42, 100 00 Praha 10 Inspection body type A No. 4015 accredited by Czech Accreditation Institute

Inspection report:	3028/2017	Laboratory tests and evaluation of the results
Subject of inspection:	Diesel fuel	(evidence No. 10565, GDiesel, 4.10.2017)
Type and date of sampling:	sample supplied by the client, 04.10.2017	
Client:		Key Industry Engineering Group, s.r.o., Praha 4 - Nusle Mojmírova 1710/15

Laboratory tests were carry out at accredited testing laboratory SGS Czech Republic, s.r.o., Oil, Gas & Chemicals, No. 1152.1, Inspection activity was performed according to SIP 1 in accordance with ČSN EN ISO / IEC 17020: 2012

Date of completion of the inspection and issue of the report: 7.11.2017

The inspection was carried out by: Approved by: Jan Špinka Bc. Jan Špinka, head of inspection body

Dokument je možno bez souhlasu inspekčního orgánu SGS Czech Republic, s.r.o. kopírovat pouze vcelku a vztahuje se pouze na uvedené zkoušené vzorky paliv. SGS Czech Republic, s.r. o., IČ: 48589241, zapsána v OR MS Praha, odd. C, vl. 18205, dne 8.3.1993

EN 590 is the current standard for **all automotive diesel fuel sold** in the European Union member states and other European countries.

> EN 590 Generally applicable requirements

Property	Unit	Li	imits	Test method ^a (See 2. Normative references)	
		minimum	maximum		
Cetane number [▷]		51,0	-	EN ISO 5165	
		-		EN 15195	
Cetane index		46,0	-	EN ISO 4264	
Density at 15 °C °	kg/m ³	820,0	845,0	EN ISO 3675	
-	_	-		EN ISO 12185	
Polycyclic aromatic hydrocarbons ^d	% (<i>m/m</i>)	-	11	EN 12916	
Sulfur content ^e	mg/kg	-	50,0	EN ISO 20846	
			until 2008-12-31	EN ISO 20847	
				EN ISO 20884	
			10,0	EN ISO 20846	
				EN ISO 20884	
Flash point	°C	Above 55	-	EN ISO 2719	
Carbon residue ¹ (on 10 % distillation residue)	% (<i>m/m</i>)	-	0,30	EN ISO 10370	
Ash content	% (<i>m/m</i>)	-	0,01	EN ISO 6245	
Water content	mg/kg	-	200	EN ISO 12937	
Total contamination	mg/kg	-	24	EN 12662 ⁹	
Copper strip corrosion (3 h at 50 °C)	rating	class 1		EN ISO 2160	
Fatty acid methyl ester (FAME) content ^h	% (<i>V/V</i>)		7,0	EN 14078	
Oxidation stability	g/m ³	-	25	EN ISO 12205	
	h	20	-	EN 15751	
Lubricity, corrected wear scar diameter (wsd 1,4) at 60 °C	μm	-	460	EN ISO 12156-1	
Viscosity at 40 °C	mm²/s	2,00	4,50	EN ISO 3104	
Distillation ^{K,1} % (V/V) recovered at 250 °C % (V/V) recovered at 350 °C	% (V/V) % (V/V)	85	< 65	EN ISO 3405	
95 % (V/V) recovered at	°C	00	360		

Table 1 - Generally applicable requirements and test methods

NOTE Requirements in bold refer to the European Fuels Directive 98/70/EC [1], including Amendment 2003/17/EC [2]

* See also 5.6.1

b See also 5.6.4

c See also 5.6.2

^d For the purposes of this European Standard, polycyclic aromatic hydrocarbons are defined as the total aromatic hydrocarbon content less the mono-aromatic hydrocarbon content, both as determined by EN 12916.

See also 5.6.3

See also 5.4.2 and Annex A

⁹ Further investigation into the total contamination test method to improve the precision, particularly in the presence of FAME, is being carried out by CEN

FAME shall meet the requirements of EN 14214

¹ For diesel fuel containing FAME above 2 % (V/V) this is an additional requirement. This is an interim requirement, under revision by CEN, when more technical data on oxidation stability and field performance of diesel fuels will be available.

For the calculation of the cetane index the 10 %, 50 % and 90 % (V/V) recovery points are also needed.

The limits for distillation at 250 °C and 350 °C are included for diesel fuel in line with EU Common Customs tariff.

5.5 Climate dependent requirements and related test methods

5.5.1 For climate-dependent requirements options are given to allow for seasonal grades to be set nationally. The options are for temperate climates six CFPP (cold filter plugging point) grades and for arctic or severe winter climates five different classes. Climate-dependent requirements are given in Table 2 (temperate climates) and Table 3 (arctic or severe winter climates). When tested by the methods given in Tables 2 and 3, automotive diesel fuel shall be in accordance with the limits specified in these Tables.

5.5.2 The cetane number limits for arctic or severe winter grades in Table 3 are lower than for the temperate class (Table 1), reflecting the correlation between ignition quality and density, and the low density of arctic or severe winter grades. The values for cetane number given in Table 3, included for correct vehicle operation, do not meet the requirements of the European Fuels Directive 98/70/EC [1], including Amendment 2003/17/EC [2]. These values are valid for use in countries where the European Fuels Directive 98/70/EC [1], including Amendment 2003/17/EC [2], does not apply or for countries where cetane number exceptions have been granted for arctic or severe winter grades.

Table 2 - Climate-related requirements and test methods - Temperate climates

Property	Unit	Limits						Test method ^a
		Grade A	Grade B	Grade C	Grade D	Grade E	Grade F	(See 2. Normative references)
CFPP	°C, max.	+5	0	-5	-10	-15	-20	EN 116
* See also 5.6.1								

Property	Units	Limits					Test method ^a
		class 0	class 1	class 2	class 3	class 4	(See 2. Normative references)
CFPP	°C, max.	-20	-26	-32	-38	-44	EN 116
Cloud point	°C, max.	-10	-16	-22	-28	-34	EN 23015
Density at 15 °C b	kg/m ³ , min. kg/m ³ , max.	800,0 845,0	800,0 845,0	800,0 840,0	800,0 840,0	800,0 840,0	EN ISO 3675 EN ISO 12185
Viscosity at 40 °C	mm ² /s, min. mm ² /s, max.	1,50 4,00	1,50 4,00	1,50 4,00	1,40 4,00	1,20 4,00	EN ISO 3104
Cetane number °	minimum	49,0	49,0	48,0	47,0	47,0	EN ISO 5165 EN 15195
Cetane index	minimum	46,0	46,0	46,0	43,0	43,0	EN ISO 4264
Distillation d,e							EN ISO 3405
% (V/V) recovered at 180 °C	% (<i>V/V</i>), max.	10	10	10	10	10	
% (V/V) recovered at 340 °C	% (<i>V/V</i>), min.	95	95	95	95	95	

Table 3 - Climate-related requirements and test methods - Arctic or severe winter climates

* See also 5.6.1

^b See also 5.6.2

^c See also 5.5.2 and 5.6.4

^d EU Common Customs Tariff definition of gas oil may not apply to the grades defined for use in arctic or severe winter climates.

* For the calculation of the cetane index the 10 %, 50 % and 90 % (V/V) recovery points are also needed